Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562865

ABSTRACT

Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of one year of mosquito-based arbovirus surveillance in two geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from eight distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time RT-PCR. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.

2.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370752

ABSTRACT

Ecuador is a tropical country reporting Dengue virus (DENV) outbreaks with areas of hyperendemic viral transmission. Entomo-virological surveillance and monitoring effort conducted in the Northwestern border province of Esmeraldas in April 2022, five pools of female Aedes aegypti mosquitoes from a rural community tested positive for DENV serotype 2 by RT-qPCR. One pool was sequenced by Illumina MiSeq, and it corresponded to genotype III Southern Asian-American. Comparison with other genomes revealed genetic similarity to a human DENV genome sequenced in 2021, also from Esmeraldas. Potential introduction events to the country could have originated from Colombia, considering the vicinity of the collection sites to the neighboring country and high human movement. The inclusion of genomic information complements entomo-virological surveillance, providing valuable insights into genetic variants. This contribution enhances our understanding of Dengue virus (DENV) epidemiology in rural areas and guides evidence-based decisions for surveillance and interventions.

3.
PLoS Negl Trop Dis ; 18(1): e0011408, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295108

ABSTRACT

The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Here, we study dengue virus (DENV) transmission across the ecologically and demographically distinct regions or Ecuador. We analyzed province-level age-stratified dengue incidence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have age-specific distributions of hospital-seeking cases consistent with recent emergence across all provinces. To evaluate factors associated with geographic differences in DENV transmission potential, we modeled DENV vector risk using 11,693 Aedes aegypti presence points to the resolution of 1 hectare. In total, 56% of the population of Ecuador, including in provinces identified as having increasing DENV transmission in our models, live in areas with high risk of Aedes aegypti, with population size, trash collection, elevation, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.


Subject(s)
Aedes , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Humans , Ecuador/epidemiology , Mosquito Vectors , Risk Factors
4.
PLoS Negl Trop Dis ; 17(8): e0010831, 2023 08.
Article in English | MEDLINE | ID: mdl-37552669

ABSTRACT

BACKGROUND: Transmission models have a long history in the study of mosquito-borne disease dynamics. The mosquito biting rate (MBR) is an important parameter in these models, however, estimating its value empirically is complex. Modeling studies obtain biting rate values from various types of studies, each of them having its strengths and limitations. Thus, understanding these study designs and the factors that contribute to MBR estimates and their variability is an important step towards standardizing these estimates. We do this for an important arbovirus vector Aedes aegypti. METHODOLOGY/PRINCIPAL FINDINGS: We perform a systematic review using search terms such as 'biting rate' and 'biting frequency' combined with 'Aedes aegypti' ('Ae. aegypti' or 'A. aegypti'). We screened 3,201 articles from PubMed and ProQuest databases, of which 21 met our inclusion criteria. Two broader types of studies are identified: human landing catch (HLC) studies and multiple feeding studies. We analyze the biting rate data provided as well as the methodologies used in these studies to characterize the variability of these estimates across temporal, spatial, and environmental factors and to identify the strengths and limitations of existing methodologies. Based on these analyses, we present two approaches to estimate population mean per mosquito biting rate: one that combines studies estimating the number of bites taken per gonotrophic cycle and the gonotrophic cycle duration, and a second that uses data from histological studies. Based on one histological study dataset, we estimate biting rates of Ae. aegypti (0.41 and 0.35 bite/mosquito-day in Thailand and Puerto Rico, respectively). CONCLUSIONS/SIGNIFICANCE: Our review reinforces the importance of engaging with vector biology when using mosquito biting rate data in transmission modeling studies. For Ae. aegypti, this includes understanding the variation of the gonotrophic cycle duration and the number of bites per gonotrophic cycle, as well as recognizing the potential for spatial and temporal variability. To address these variabilities, we advocate for site-specific data and the development of a standardized approach to estimate the biting rate.


Subject(s)
Aedes , Insect Bites and Stings , Animals , Humans , Mosquito Vectors , Insect Bites and Stings/epidemiology , Thailand/epidemiology , Feeding Behavior
5.
medRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398346

ABSTRACT

The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Ecuador is an interesting country to study drivers of dengue virus (DENV) transmission given it has multiple ecologically and demographically distinct regions. Here, we analyze province-level age-stratified dengue prevalence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades and across provinces in Ecuador. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have distinct age-specific prevalence distributions consistent with recent emergence across all provinces. We evaluated factors to the resolution of 1 hectare associated with geographic differences in vector suitability and arbovirus disease in the last 10 years by modeling 11,693 A aegypti presence points and 73,550 arbovirus cases. In total, 56% of the population of Ecuador lives in areas with high risk of Aedes aegypti. Most suitable provinces had hotspots for arbovirus disease risk, with population size, elevation, sewage connection, trash collection, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.

6.
Viruses ; 15(6)2023 06 19.
Article in English | MEDLINE | ID: mdl-37376692

ABSTRACT

Human Papillomavirus (HPV) infection is associated with intraepithelial neoplasia and cervical cancer (CC). Ecuador has a high prevalence of cervical cancer, with more than 1600 new cases diagnosed annually. This study aimed to analyze oncogenes E6 and E7 of HPV16 in samples collected from women with cancerous and precancerous cervical lesions from the Ecuadorian coast. Twenty-nine women, including six with ASCUS, three with LSIL, thirteen with HSIL, and seven with Cacu, were analyzed. The most common SNPs were E6 350G or L83V (82.6%) and E6 145T/286A/289G/335T/350G or Q14H/F78Y/L83V (17.4%). Both variants are reported to be associated with an increased risk of cervical cancer in worldwide studies. In contrast, all E7 genes have conserved amino-acid positions. Phylogenetic trees showed the circulation of the D (26.1%) and A (73.9) lineages. The frequency of D was higher than that reported in other comparable studies in Ecuador and Latin America, and may be related to the ethnic composition of the studied populations. This study contributes to the characterization of the potential risk factors for cervical carcinogenesis associated with Ecuadorian women infected with HPV16.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/epidemiology , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Ecuador/epidemiology , Human Papillomavirus Viruses , Human papillomavirus 16/genetics , Phylogeny
7.
Am J Trop Med Hyg ; 108(5): 981-986, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37037437

ABSTRACT

Mosquito-borne diseases are a global burden; however, current methods of evaluating human-mosquito contact rates are expensive and time consuming. Validated surveys of self-reported mosquito bites may be an inexpensive way to determine mosquito presence and bite exposure level in an area, but this remains untested. In this study, a survey of self-reported mosquito bites was validated against household mosquito abundance from six communities in Esmeraldas, Ecuador. From February 2021 to July 2022, households were interviewed monthly, and five questions were used to ask participants how often they were bitten by mosquitoes at different times during the day. At the same time, adult mosquitoes were collected using a Prokopack aspirator. Species were identified and counted. Survey responses were compared with the total number of mosquitoes found in the home using negative binomial regression. More frequent self-reported mosquito bites were significantly associated with higher numbers of collected adult mosquitoes. These associations were driven by the prevalence of the dominant genera, Culex. These results suggest that surveys of perceived mosquito bites relate to actual mosquito presence, making them a potentially useful tool for determining the impact of vector-control interventions on community perceptions of risk but less useful for assessing the risk of nondominant species such as Aedes aegypti. Further work is needed to examine the robustness of these results in other contexts.


Subject(s)
Aedes , Insect Bites and Stings , Adult , Animals , Humans , Self Report , Mosquito Vectors/physiology , Insect Bites and Stings/epidemiology , Ecuador/epidemiology , Family Characteristics , Aedes/physiology
8.
Clin Linguist Phon ; 36(8): 721-737, 2022 08 03.
Article in English | MEDLINE | ID: mdl-36044010

ABSTRACT

This article describes the phonology of a Granada Spanish-speaking 4-year-old boy with Protracted Phonological Development (PPD) from the perspective of constraint-based nonlinear phonology. Although he had acquired basic word structure and a near-complete repertoire of vowels and consonants, he had difficulties producing more complex word structures (multisyllabic words, clusters, diphthongs) and producing sequences of consonant manner and place features across vowels. The analysis outlines his strengths and needs in phonological development, and proposes an intervention plan to address constraints on complexity and sequences.


Subject(s)
Language , Phonetics , Child, Preschool , Humans , Male , Speech Production Measurement
9.
PLoS One ; 17(5): e0268340, 2022.
Article in English | MEDLINE | ID: mdl-35544541

ABSTRACT

Continued waves, new variants, and limited vaccine deployment mean that SARS-CoV-2 tests remain vital to constrain the coronavirus disease 2019 (COVID-19) pandemic. Affordable, point-of-care (PoC) tests allow rapid screening in non-medical settings. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is an appealing approach. A crucial step is to optimize testing in low/medium resource settings. Here, we optimized RT-LAMP for SARS-CoV-2 and human ß-actin, and tested clinical samples in multiple countries. "TTTT" linker primers did not improve performance, and while guanidine hydrochloride, betaine and/or Igepal-CA-630 enhanced detection of synthetic RNA, only the latter two improved direct assays on nasopharygeal samples. With extracted clinical RNA, a 20 min RT-LAMP assay was essentially as sensitive as RT-PCR. With raw Canadian nasopharygeal samples, sensitivity was 100% (95% CI: 67.6% - 100%) for those with RT-qPCR Ct values ≤ 25, and 80% (95% CI: 58.4% - 91.9%) for those with 25 < Ct ≤ 27.2. Highly infectious, high titer cases were also detected in Colombian and Ecuadorian labs. We further demonstrate the utility of replacing thermocyclers with a portable PoC device (FluoroPLUM). These combined PoC molecular and hardware tools may help to limit community transmission of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Canada , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
10.
Life (Basel) ; 12(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35330076

ABSTRACT

The COVID-19 pandemic hit Ecuador severely. The country caught the attention of international media due to its high death toll and overwhelmed healthcare system. The clinical diagnostics system was rapidly overloaded, and the import of PCR tests was delayed. The case of Ecuador illustrates how middle-income countries rely heavily on the importation of biotechnological products for their healthcare systems. The Ecuadorian experience during the COVID-19 pandemic serves as a call for the formation of policies for the development of the biotechnological industry.

11.
Insects ; 13(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35323603

ABSTRACT

Aedes albopictus, also known as the tiger mosquito, is widespread worldwide across tropical, subtropical, and temperate regions. This insect is associated with the transmission of several vector-borne diseases, and, as such, monitoring its distribution is highly important for public health. In Ecuador, Ae. albopictus was first reported in 2017 in Guayaquil. Since then, the vector has been identified in the Northeastern lowlands and the Amazon basin. This study aims to determine the genetic diversity of Ecuadorian populations of Ae. albopictus through the analysis of the mitochondrial gene COI and to describe the potential distribution areas of this species within the country. The genetic diversity was determined by combining phylogenetic and population genetics analyses of five localities in Ecuador. Results showed two haplotypes in the Ecuadorian populations of Ae. albopictus. Haplotype 1 (H1) was found in the coastal and Amazon individuals, while haplotype 2 (H2) was only found in the three northeastern lowlands sites. In a worldwide context, H1 is the most widespread in 21 countries with temperate and tropical habitats. In contrast, H2 distribution is limited to five countries in tropical regions, suggesting fewer adaptation traits. Our prediction model showed a suitable habitat for Ae. albopictus in all regions (coastal, Amazon basin, and Andean lowland regions and the Galápagos Islands) of Ecuador. Hence, understanding different aspects of the vector can help us implement better control strategies for surveillance and vectorial control in Ecuador.

12.
Nat Biomed Eng ; 6(3): 246-256, 2022 03.
Article in English | MEDLINE | ID: mdl-35256758

ABSTRACT

In low-resource settings, resilience to infectious disease outbreaks can be hindered by limited access to diagnostic tests. Here we report the results of double-blinded studies of the performance of paper-based diagnostic tests for the Zika and chikungunya viruses in a field setting in Latin America. The tests involved a cell-free expression system relying on isothermal amplification and toehold-switch reactions, a purpose-built portable reader and onboard software for computer vision-enabled image analysis. In patients suspected of infection, the accuracies and sensitivities of the tests for the Zika and chikungunya viruses were, respectively, 98.5% (95% confidence interval, 96.2-99.6%, 268 serum samples) and 98.5% (95% confidence interval, 91.7-100%, 65 serum samples) and approximately 2 aM and 5 fM (both concentrations are within clinically relevant ranges). The analytical specificities and sensitivities of the tests for cultured samples of the viruses were equivalent to those of the real-time quantitative PCR. Cell-free synthetic biology tools and companion hardware can provide de-centralized, high-capacity and low-cost diagnostics for use in low-resource settings.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue , Zika Virus Infection , Zika Virus , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Dengue/diagnosis , Humans , Zika Virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
13.
PLoS Negl Trop Dis ; 15(9): e0009679, 2021 09.
Article in English | MEDLINE | ID: mdl-34570788

ABSTRACT

Dengue is recognized as a major health issue in large urban tropical cities but is also observed in rural areas. In these environments, physical characteristics of the landscape and sociodemographic factors may influence vector populations at small geographic scales, while prior immunity to the four dengue virus serotypes affects incidence. In 2019, a rural northwestern Ecuadorian community, only accessible by river, experienced a dengue outbreak. The village is 2-3 hours by boat away from the nearest population center and comprises both Afro-Ecuadorian and Indigenous Chachi households. We used multiple data streams to examine spatial risk factors associated with this outbreak, combining maps collected with an unmanned aerial vehicle (UAV), an entomological survey, a community census, and active surveillance of febrile cases. We mapped visible water containers seen in UAV images and calculated both the green-red vegetation index (GRVI) and household proximity to public spaces like schools and meeting areas. To identify risk factors for symptomatic dengue infection, we used mixed-effect logistic regression models to account for the clustering of symptomatic cases within households. We identified 55 dengue cases (9.5% of the population) from 37 households. Cases peaked in June and continued through October. Rural spatial organization helped to explain disease risk. Afro-Ecuadorian (versus Indigenous) households experience more symptomatic dengue (OR = 3.0, 95%CI: 1.3, 6.9). This association was explained by differences in vegetation (measured by GRVI) near the household (OR: 11.3 95% 0.38, 38.0) and proximity to the football field (OR: 13.9, 95% 4.0, 48.4). The integration of UAV mapping with other data streams adds to our understanding of these dynamics.


Subject(s)
Aircraft , Dengue/epidemiology , Geographic Mapping , Adolescent , Adult , Animals , Child , Culicidae , Disease Outbreaks , Ecuador/epidemiology , Family Characteristics , Humans , Mosquito Control , Mosquito Vectors , Risk Factors , Rural Population , Time Factors
14.
Parasit Vectors ; 14(1): 458, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34493321

ABSTRACT

BACKGROUND: Vector-borne diseases are a major cause of disease burden in Guayaquil, Ecuador, especially arboviruses spread by Aedes aegypti mosquitoes. Understanding which household characteristics and risk factors lead to higher Ae. aegypti densities and consequent disease risk can help inform and optimize vector control programs. METHODS: Cross-sectional entomological surveys were conducted in Guayaquil between 2013 and 2016, covering household demographics, municipal services, potential breeding containers, presence of Ae. aegypti larvae and pupae, and history of using mosquito control methods. A zero-truncated negative binomial regression model was fitted to data for estimating the household pupal index. An additional model assessed the factors of the most productive breeding sites across all of the households. RESULTS: Of surveyed households, 610 satisfied inclusion criteria. The final household-level model found that collection of large solid items (e.g., furniture and tires) and rainfall the week of and 2 weeks before collection were negatively correlated with average pupae per container, while bed canopy use, unemployment, container water volume, and the interaction between large solid collection and rainfall 2 weeks before the sampling event were positively correlated. Selection of these variables across other top candidate models with ∆AICc < 1 was robust, with the strongest effects from large solid collection and bed canopy use. The final container-level model explaining the characteristics of breeding sites found that contaminated water is positively correlated with Ae. aegypti pupae counts while breeding sites composed of car parts, furniture, sewerage parts, vases, were all negatively correlated. CONCLUSIONS: Having access to municipal services like bulky item pickup was effective at reducing mosquito proliferation in households. Association of bed canopy use with higher mosquito densities is unexpected, and may be a consequence of large local mosquito populations or due to limited use or effectiveness of other vector control methods. The impact of rainfall on mosquito density is multifaceted, as it may both create new habitat and "wash out" existing habitat. Providing services and social/technical interventions focused on monitoring and eliminating productive breeding sites is important for reducing aquatic-stage mosquito densities in households at risk for Ae. aegypti-transmitted diseases.


Subject(s)
Aedes/physiology , Family Characteristics , Pupa/physiology , Aedes/virology , Animal Distribution , Animals , Cross-Sectional Studies , Dengue/transmission , Ecosystem , Ecuador , Humans , Mosquito Control , Mosquito Vectors/virology , Pupa/virology , Risk Factors , Rural Population
15.
J Virol Methods ; 298: 114302, 2021 12.
Article in English | MEDLINE | ID: mdl-34563582

ABSTRACT

Standard diagnoses of SARS-CoV-2 infections are done by RNA extraction and real-time RT-PCR (rRT-PCR). However, the need for RNA extraction complicates testing due to increased processing time, high cost, and limited availability of commercial kits. Therefore, alternative methods for rRT-PCR detection of SARS-CoV-2 without RNA extraction were investigated. Nasopharyngeal and sputum samples were used to compare the sensitivity of three techniques: Trizol RNA extraction, thermal shock, and the direct use of samples with an RNase inhibitor. Direct, extraction-free use of primary samples plus the RNase inhibitor produced diagnostic values of 100 % sensitivity and specificity compared to standard protocols, and these findings were validated in a second, independent laboratory.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Nasopharynx , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Sputum
16.
Parasit Vectors ; 14(1): 482, 2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34538276

ABSTRACT

BACKGROUND: The global impact of Zika virus in Latin America has drawn renewed attention to circulating mosquito-borne viruses in this region, such as dengue and chikungunya. Our objective was to assess socio-ecological factors associated with Aedes mosquito vector density as a measure of arbovirus transmission risk in three cities of potentially recent Zika virus introduction: Ibagué, Colombia; Manta, Ecuador; and Posadas, Argentina, in order to inform disease mitigation strategies. METHODS: We sampled Aedes mosquito populations in a total of 1086 households, using indoor and peridomestic mosquito collection methods, including light traps, resting traps, traps equipped with chemical attractant and aspirators. For each sampled household, we collected socio-economic data using structured questionnaires and data on microenvironmental conditions using iButton data loggers. RESULTS: A total of 3230 female Aedes mosquitoes were collected, of which 99.8% were Aedes aegypti and 0.2% were Aedes albopictus. Mean female Aedes mosquito density per household was 1.71 (standard deviation: 2.84). We used mixed-effects generalized linear Poisson regression analyses to identify predictors of Aedes density, using month, neighborhood and country as random-effects variables. Across study sites, the number of household occupants [incidence rate ratio (IRR): 1.08, 95% confidence interval (CI): 1.01-1.14], presence of entry points for mosquitoes into the household (IRR: 1.51, 95% CI: 1.30-1.76) and presence of decorative vegetation (IRR: 1.52, 95% CI: 1.22-1.88) were associated with higher Aedes density; while being in the highest wealth tertile of household wealth (IRR: 0.78, 95% CI: 0.66-0.92), knowledge of how arboviruses are transmitted (IRR: 0.94, 95% CI: 0.89-1.00) and regular emptying of water containers by occupants (IRR: 0.79, 95% CI: 0.67-0.92) were associated with lower Aedes density. CONCLUSIONS: Our study addresses the complexities of arbovirus vectors of global significance at the interface between human and mosquito populations. Our results point to several predictors of Aedes mosquito vector density in countries with co-circulation of multiple Aedes-borne viruses, and point to modifiable risk factors that may be useful for disease prevention and control.


Subject(s)
Aedes/virology , Animal Distribution , Arbovirus Infections/transmission , Arboviruses/pathogenicity , Mosquito Vectors/virology , Aedes/physiology , Animals , Argentina , Chikungunya Fever/transmission , Cities , Colombia , Dengue/transmission , Ecuador , Female , Humans , Mosquito Vectors/physiology , Risk Factors , Zika Virus Infection/transmission
17.
Insects ; 12(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673456

ABSTRACT

Aedes aegypti, also known as the yellow fever mosquito, is the main vector of several arboviruses. In Ecuador, dengue and chikungunya are the most prevalent mosquito-borne diseases. Hence, there is a need to understand the population dynamics and genetic structure of the vector in tropical areas for a better approach towards effective vector control programs. This study aimed to assess the genetic diversity of Ae. aegypti, through the analyses of the mitochondrial gene ND4, using a combination of phylogenetic and population genetic structure from 17 sites in Ecuador. Results showed two haplotypes in the Ecuadorian populations of Ae. aegypti. Haplotype 1 was closely related to Ae. aegypti reported from America, Asia, and West Africa. Haplotype 2 was only related to samples from America. The sampled vectors from the diverse localities showed low nucleotide diversity (π = 0-0.01685) and genetic differentiation (FST = 0.152). AMOVA analyses indicated that most of the variation (85-91%) occurred within populations, suggesting that geographical barriers have little effect on the genetic structure of Ecuadorian populations of Ae. aegypti. These results agree with the one main population (K = 1) detected by Structure. Vector genetic identity may be a key factor in the planning of vector control strategies.

18.
J R Soc Interface ; 16(157): 20190141, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31455165

ABSTRACT

Cutaneous leishmaniasis (CL) is a neglected tropical disease transmitted by species of Phlebotominae sand flies. CL is responsible for more than 1000 reported cases per year in Ecuador. Vector collection studies in Ecuador suggest that there is a strong association between the ecological diversity of an ecosystem, the presence of potential alternative or reservoir hosts and the abundance of sand fly species. Data collected from a coastal community in Ecuador showed that Leishmania parasites may be circulating in diverse hosts, including mammalian and potentially avian species, and these hosts may serve as potential hosts for the parasite. There has been limited reporting of CL cases in Ecuador because the disease is non-fatal and its surveillance system is passive. Hence, the actual incidence of CL is unknown. In this study, an epidemic model was developed and analysed to understand the complexity of CL transmission dynamics with potential non-human hosts in the coastal ecosystem and to estimate critical epidemiological quantities for Ecuador. The model is fitted to the 2010 CL outbreak in the town of Valle Hermoso in the Santo Domingo de los Tsachilas province of Ecuador and parameters such as CL transmission rates in different types of hosts (primary and alternative), and levels of case reporting in the town are estimated. The results suggest that the current surveillance in this region fails to capture 38% (with 95% CI (29%, 47%)) of the actual number of cases under the assumption that alternative hosts are dead-end hosts and that the mean CL reproduction number in the town is 3.9. This means that on the average 3.9 new human CL cases were generated by a single infectious human in the town during the initial period of the 2010 outbreak. Moreover, major outbreaks of CL in Ecuador in coastal settings are unavoidable until reporting through the surveillance system is improved and alternative hosts are managed properly. The estimated infection transmission probabilities from alternative hosts to sand flies, and sand flies to alternative hosts are 27% and 32%, respectively. The analysis highlights that vector control and alternative host management are two effective programmes for Ecuador but need to be implemented concurrently to avoid future major outbreaks.


Subject(s)
Ecosystem , Insect Vectors/physiology , Leishmaniasis, Cutaneous/epidemiology , Models, Biological , Psychodidae/physiology , Animals , Birds/parasitology , Ecuador/epidemiology , Humans , Leishmania/isolation & purification , Psychodidae/parasitology , Zoonoses
19.
J Am Mosq Control Assoc ; 35(2): 113-122, 2019 06.
Article in English | MEDLINE | ID: mdl-31442135

ABSTRACT

In Ecuador, the status of insecticide resistance for Aedes aegypti, the principal arboviral vector in the country, has not been previously evaluated. The aim of this research was to describe the resistance status of Ae. aegypti to the principal insecticides used for vector control in provinces with high reports of arboviral clinical cases. This was a descriptive study performed on Ae. aegypti collected from 2016 to 2017 in 14 localities of Ecuador. The larvae were reared and tested using bioassays applying the adulticides malathion and deltamethrin, and the larvicide temephos. The lethal concentrations were obtained for field-collected specimens and compared to the susceptible reference strain ROCK, MRA-734. Mosquitoes from all the localities showed resistance to deltamethrin and susceptibility to malathion. On the other hand, mosquitoes demonstrated resistance to the larvicide temephos in 5 of the 14 localities analyzed. The results obtained in this research may be used by healthcare decision-makers to improve vector control in Ecuador. Rotation of insecticides and alternative biological vector control strategies should be considered to manage the resistance observed in Ae. aegypti to deltamethrin and temephos. New strategies to use insecticides should also be aimed to prevent selective pressure with malathion.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Insecticides/pharmacology , Larva/drug effects , Malathion/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Temefos/pharmacology , Animals , Ecuador , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...